Publications

Ballistocardiogram Heart Rate Variability Estimation Using Consumer Earbuds

Published

IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP)

Date

2024.04.15

Research Areas

Abstract

Stress can potentially have detrimental effects on both physical and mental well-being, but monitoring it can be challenging, especially in free-living conditions. One approach to address this challenge is to use earbud accelerometers to capture the ballistocardiogram (BCG) response. These sensors allow for noninvasive stress monitoring by estimating physiological indicators linked to stress, such as heart rate variability (HRV). However, ear-worn devices are susceptible to motion artifacts and can exhibit significant BCG signal morphology variations. These challenges necessitate accurate algorithms to estimate HRV for everyday use. Therefore, we developed a method to measure interbeat intervals (IBI) from BCG signals collected from an earbud. To enhance IBI estimation accuracy, we employed a Bayesian method that incorporates robust apriori IBI prediction weighting and sensor fusion techniques. We have also conducted a study involving 97 participants to assess the earbuds' ability to estimate HRV metrics and classify stressful activities. Our findings demonstrate low IBI estimation error (4.16% ± 1.90%), along with lower errors in subsequent higher-order HRV metrics compared to the state-of-the-art algorithms.